

100Gigabit and Beyond: Increasing Capacity in IP/MPLS Networks Today

Rahul Vir Product Line Manager Foundry Networks rvir@foundrynet.com

40GE/100GE Timeline to Standardization

- The Ethernet Alliance sponsored the Call For Interest in July 2006
 - CFI approved and High Speed Study Group created
 - First Meeting held at September 2006 IEEE interim plenary
- # High Speed Ethernet (HSE) Study Group given 6 months to develop PAR
- Process extended 6 Months due to push for 40GE addition
 - 100 GE for 100m MMF, 10km SMF and 40km SMF
 - 40 GE for Backplane, 100m MMF; 10km SMF added during March 08 Plenary

- Transition from 10GE to 40GE/100GE is intended mainly for the Core networks, Transit Networks, Data Center and IXP initially
- 40GE may be technologically achievable today but may not offer sufficient performance or cost benefits to warrant deployment versus 100GE
- The timeline to standardize is the same for both 40GE or 100GE
- Predict 45 nm to make 100GE solutions feasible by 2009
- IEEE 40GE/100GE expected to be ratified July 2010

- Ever increasing demand for bandwidth in backbones, transit links, Internet peering points, data centers, ...
- 100 Gigabit Ethernet is still ~24 months away
- © OC-768 POS for many providers is an unaffordable alternative
- Equal Cost Multi-Path (ECMP) with nx10GE Link Aggregation Groups (LAG) is a far more affordable way of scaling capacity

Need more bandwidth

- Utilize investment in existing infrastructure
- Ability to add bandwidth in small increments
- Cost-effectively add bandwidth

Increased protection

- End to End protection with diverse paths
- 1+N link protection
- Avoid idling of backup paths
- Allow scaling beyond 100G today

Continued benefit after 40GE/100GE standardization

- Many core/transit networks carrying over 100Gbps between critical nodes today
- These bandwidth requirements expected to grow

Protocols: Determine multiple paths for ECMP

- Routing Protocols: IGP, BGP
 - Provide path diversity
- Link Aggregation: Offer multiple links for load-sharing
 - Link Aggregation/bundling/trunks
 - Provide link diversity

Data Forwarding: Decision on how packets are load-shared

- Load Balancing Algorithm
 - Provide efficient utilization
- Fields in the packet used for load balancing
 - Ability to tune to various traffic types

Routing Protocols determine multiple equal cost paths to a destination

- IGP (ISIS/OSPF) ECMP:
 - Affects paths taken by IP traffic
 - Affects paths taken by MPLS LSPs
 - LDP paths follow IGP topology
 - RSVP-TE LSPs follow IGP and IGP-TE topologies
- BGP ECMP:
 - Affects paths taken by IP traffic
 - Affects paths taken by IP & IP-VPN traffic in MPLS networks
 - Multiple equal cost BGP next-hops reachable by diverse LSPs
 - Multiple LSP paths to a BGP next-hop

- Number of ECMP paths per prefix supported by a router
 - More paths give better path diversity
- Support of ECMP with link aggregation
 - Very common that each path can contain LAG groups
 - LAG bandwidth changes should optionally be automatically reflected in Layer 3 interface metrics allowing routing protocols to choose better paths
- Does the router support even distribution over any number of paths?
 - For better utilization of network resources, must support even distribution for any number of paths (2, 3, 4, 5, 6,....)

MPLS signaling allows multiple LSPs to the same destination

- RSVP-TE: Selects a path for a LSP from multiple equal cost paths that satisfy the LSP constraints, as determined through CSPF
 - Typical criteria used:
 - Hops: Pick the path with least number of hops
 - Less probability of failure
 - Least-fill: Pick the path with highest available bandwidth
 - Even spread of traffic
 - Most-fill: Pick the path with lowest available bandwidth
 - Leave room for higher bandwidth LSPs
- LDP: Allows a prefix to be reachable through multiple equal cost label paths

IP Mapping to LSPs For IPv4/v6 Routing and BGP/MPLS-VPNs

- Typical mapping criteria used:
 - Assign a prefix to single LSP
 - Better predictability
 - Map prefixes within a VRF to single LSP
 - Better operator control
 - Load-share on per flow basis
 - Better traffic distribution

Foundry Networks - All rights reserved.

- Typical mapping criteria used:
 - Bind PW to least used LSP (LSP with lowest number of PWs)
 - Good distribution of traffic
 - Bind PW to LSP with most available bandwidth or same class of service
 - Useful for services with dedicated bandwidth requirements
 - Explicitly bind PW to LSP
 - Better operator control
 - PW traffic split across multiple LSPs
 - Better distribution of traffic based on flows

- Provides bundling multiple physical links between 2 devices
- Typically, higher layer protocols unaware of the link bundling
- IEEE 802.3 LAG (LACP) support
 - Dynamic configuration, provides increased availability
- Static Link Aggregation Groups (LAG) support
 - No need for control protocol, and works in multi-vendor scenario
- LAG capacity
 - Number of links in a LAG
 - Provide 10G bundling to scale beyond 100G bandwidth today
 - Number of LAG groups

Load-Sharing in the Forwarding Plane Common Schemes

Packet Based Forwarding

- Each packet sent on the next link
- Perfect load balancing
- Potential packet reordering issues
- Possible increase in latency and jitter for some flows

Flow Based Forwarding

- Identifies packets as flows
 - Based on packet content such as IP header
- Keeps flows on the same path
 - Maintains packet ordering
- Hashing is one of the most popular load sharing scheme for flow based forwarding

Flows based on Source IP & Destination IP addresses

- Works in most scenarios
- Issue: Traffic between 2 hosts gets relegated to one path
 - Can lead to over-utilization of one path
- Flows based on L2, L3 and L4 information
 - Better traffic distribution for applications between 2 hosts

Foundry Networks – All rights reserved.

- At Ingress PE (packets entering a MPLS LSP):
 - Can load share across multiple LSPs and multiple links in a LAG
 - Apply load sharing principles of L2 & L3 flows
- At Egress PE (packets exiting a MPLS LSP):
 - Can load share per LSP/VC label:
 - High usage PWs/VPN labels will over-utilize one path
 - Per flow: Better distribution of traffic
 - Using LSP/VC label and load sharing principles of L2 & L3 flows

Foundry Networks - All rights reserved.

- Transit LSRs (and PHP nodes) have no information on packet payload
- Transit LSR speculates on the packet type
 - Checks first nibble after bottommost label
 - If 4/6, speculates on packet as IPv4/IPv6
 - Else (optionally) speculates on packet as Ethernet
 - Can now load-share using "LSP Label/VC label/L2/L3/L4 headers"

Load Balancing Algorithm Considerations for flow based forwarding

- A good load balancing algorithm is essential for efficiently utilizing the increased capacity of LAG/ECMP paths
 - Must Distribute Traffic Evenly
 - For example, a good algorithm needs to ensure that effective capacity of a 32-port 10GE LAG should be close to 320Gbps
- Other Considerations:
 - Number of fields in packet header that can be used for load balancing
 - More the fields, better the distribution
 - Number of hash buckets
 - More hash buckets result in better distribution
 - Minimal correlation of ECMP with LAG
 - Correlation will lead to over-utilization of some paths/links
 - Can treat each packet type differently
 - For example, L2 & L3 flows have to be treated differently

Use Case: Load Sharing across a 32-port LAG Group *IPv4 Traffic Distribution Test*

- In a multi-stage network, similar routers pick the same path for flows with identical hash
 - Leads to over-utilization of some parts of the network

Hash based forwarding issues and solutions Basic Hash Diversification (Neutralizes Polarization Effect)

- Each router uses a unique-id per router in hash calculations
 - Alternatively, hashing using Source and Destination MACs may give comparable results in most scenarios
 - Similar routers now pick different links
 - However, flows are still together on same links

Hash based forwarding issues and solutions Advanced Hash Diversification (Neutralizes Polarization Effect)

- Routers in each stage of the network run a different variant of the hash algorithm and neutralize polarization effect
 - Flows can now be distributed

Foundry Networks - All rights reserved.

- Multiple load balancing options to boost capacity at various layers
 - Increase throughput beyond the current limits of physical link capacity
 - Useful up to and even after 40GE/100GE standardization
 - Cost effective and efficient
- Load-Sharing improves network utilization
 - Efficient hashing algorithm determines the efficiency
 - Works over multiple paths and links
- Flow based forwarding offers many advantages for efficient utilization of the increased capacity
 - Watch out for polarization effects in multi-stage networks
 - Options are available to neutralize them
- Not a one size fits all approach
 - Choose optimal schemes based on traffic types and operator policy

 \odot

 \odot

Thank You!

0