ISP-Aided Neighbor Selection for P2P Systems

Anja Feldmann

<anja at net.t-labs.tu-berlin.de>

Vinay Aggarwal, Obi Akonjang, Christian Scheideler (TUM)

Deutsche Telekom Laboratories
TU-Berlin

P2P traffic

- >50% of Internet traffic
 - Examples: Bittorrent, eDonkey, Skype, GoogleTalk...

P2P from an ISPs view

- □ Good:
 - P2P applications fill a void
 - P2P applications are easy to develop and deploy
 - P2P applications spur broadband demand
- □ Bad:
 - P2P systems form overlays at application layer
 - Routing layer functionality duplicated at app layer
 - P2P topology agnostic of underlay→ performance loss
 - Traffic engineering difficult with P2P traffic
- ISPs are in a dilemma

ISP dilemma

Random/RTT-based peer selection

→ inefficient network resource usage

Solution: ISP-P2P cooperation

- Insight: ISP knows its network
 - Node: bandwidth, geographical location, service class
 - Routing: policy, OSPF/BGP metrics, distance to peers

Solution: ISP-P2P cooperation

- Insight: ISP knows its network
 - Node: bandwidth, geographical location, service class
 - Routing: policy, OSPF/BGP metrics, distance to peers
- Our idea:
 - ISPs: offer oracle that provides network distance info
 - P2P: use oracle to build P2P neighborhoods

ISP-P2P cooperation

- Insight: ISP knows its network
 - Node: bandwidth, geographical location, service class
 - Routing: policy, OSPF/BGP metrics, distance to peers
- Our idea:
 - ISPs: offer oracle that provides network distance info
 - P2P: use oracle to build P2P neighborhood

- P4P
 - Provide interfaces for applications and networks to communicate regarding
 - Example: Modified iTracker for BitTorrent

Oracle service

Solution: ISP-P2P cooperation

- Insight: ISP knows its network
 - Node: bandwidth, geographical location, service class
 - Routing: policy, OSPF/BGP metrics, distance to peers
- Oracle concept
 - Service of AS / ISP
 - Input: list of possible dst IPs
 - Ouput: ranked list of dst IPs
 - E.g. according to distances between src IP and dst IPs

Oracle service (2.)

Oracle-based peer selection

→ for topology and content exchange

Oracle service (3.)

Oracle-based peer selection

→ localizes topology and traffic

ISP-P2P cooperation

- ISP-aided optimal P2P neighbour selection
 - Simple and general solution, open for all overlays
 - Run as Web server or UDP service at known location

- Benefits: P2P
 - No need to measure path characteristics
 - Easy to avoid bottlenecks => better performance
- Benefits: ISPs
 - Regains control over traffic
 - Cost savings
 - No legal issues (as no content is cached)

Evaluation

- Impact
 - Topology
 - Congestion
 - End-user performance
- Methodology
 - Sensitivity study
 - Use different ISP / P2P topologies
 - Use different user behavioral patterns
 - Content availability, churn, query patterns
 - Evaluate effects of on end-user experience

Overlay-underlay topology correlation

Random vs. biased P2P topology

End-user performance evaluation

- Packet-level simulations
 - Scalable Simulation Framework (SSFNet)
 - Models for IP, TCP, HTTP, BGP, OSPF, etc.
 - Limited to about 700 overlay peers (memory constraints)
- Gnutella-based P2P system
 - Content search via flooding
 - Content exchange via HTTP
- Topologies: several
- User behavioral patterns: several

Topologies: ISP vs. P2P

- Germany
 - 12 ISP's (subset derived from published measurements)
 - 700 peers distributed according to ISP-published customer numbers
- USA
 - 25 Major ISP's (from Rocketfuel)
 - 700 peers distributed in AS's according to city population
- World topologies
 - Sub-sample of measured Internet AS-Topologies: 16 AS's, 700 peers

	Tier1 (# AS / # peers)	Tier2 (# AS / # peers)	Tier3 (# AS / # peers)
World1	1 / 10	5 / 46	10 / 46
World2	1 / 355	5 / 23	10 / 23
World3	1 / 50	5 / 46	10 / 42

P2P user behavior

- Churn: online/offline duration
 - Pareto and Weibull close to observed behavior
 - Uniform base comparison
 - Poisson reflects worst-case scenario
- Content: type, availability and distribution
 - Constant size (512kB)
 - Pareto and Weibull typical (many free-riders)
 - Uniform base comparison
 - Poisson hypothetical case (most peers sharing)

ISP experience: Intra-AS content

- Content stays within ISPs network
 - Without oracle 10 to 35%
 - With oracle 55 to 80%
- Consistent with Telefonica field trial results for BBC

ISP experience: Intra AS content (2.)

Content stays within ISPs network

<u>User experience: Download time</u>

- □ Mean download time reduction: 1 3 secs (16 34%)
- Consistent across topologies

<u>User experience: Download time (2.)</u>

Reduced mean download time

<u>Summary</u>

- Oracle
 - Simple and easy to implement
- Evaluation shows
 - Overlay graph structure not affected
 - Reduced AS distance
 - P2P topology correlated with AS topology
 - Traffic congestion analysis
 - Reduces inter-AS traffic => load and costs
 - Traffic distribution close to theoretical optimum
- Benefits
 - ISPs: regain control of network traffic
 - P2P network: sees performance improvements

Upcoming

- Oracle software release
 - Open source implementation will be available (Based on bind)
- Software patches for popular P2P clients
 - Gnutella
 - BitTorrent
 - eDonkey
 - P2P TV
- http://www.net.t-labs.tu-berlin.de/isp-p2p/
- Upcoming IETF workshop (May 28th)
 - P2P infrastructure workshop